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Abstract. This paper reports a calculation of moments of spectral density distributions which
are used in statistical theory of spectra of many-electron systems. The procedure lead to formulae
which are fit for computer evaluations. The method is based on the determination of spin-adapted
traces of powers of the Hamiltonian operator, represented in 2 finite-dimensional antisymmetric
and spin-adapted Hilbert space, A whole study of the traces which appear in this problem is
described.

1. Inéroduction

In dealing with the study of discrete spectra of N-particle systems, the statistical method
has proved to be a powerful tool. The determination of individual energy values is difficult
in many experimental studies or it requires great effort in precise quanturn mechanical
calculations. Alternatively, general characteristics of the discrete spectra can be derived
in the treatment which is known as statistical spectroscopy (Brody et a/ 1981, French and
Kota 1982). The statistical techniques were first used in the analysis of nuclear spectra
(Porter 1965, Nomura 1972, Nomura 1974). However they have been also applied to the
description of spectra of N-electron systems, being particularly useful in sitvations where
the number of levels is very large (Cowan 1981). Classical examples of application of the
statistical approach are the studies of the emission specira of highly ionized atoms, which
appear in plasmas and astrophysics, where usually the lines corresponding to the transitions
between the levels of two configurations are not well resolved (Bauche-Arnoult er al 1984,
Bancewiz and Karwowski 1991, Banche and Bauche-Arnoult 1930),

The statistical study of spectra is based on the treatment of the set of the eigenvalues
of the Hamiltonian as a statistical ensemble. Hence, all the properties of the system can
be derived from an appropriate knowledge of the distribution function. Tweo strategies
may be applied to approximate the distribution function. Either its shape is assumed to
depend on several parameters, which necessitates checking that asumption or, alternatively,
the distribution fumction is expressed through a Gram—Charlier expansion (Bauche and
Bauche-Arnoult 1990). In the latter case, calculation of the moments of the spectral density
distribution to a determined order » is needed.

In the description of N-electron systems, the Hamiltonian is usually represented in a
finite-dimensional, antisymmetric and spin-adapted Hilbert space which is also known as
full configuration interaction (FCI) space (Paldus 1976). Hence, in statistical treatments of
the N-electron systems, the calculation of the moments of spectral density distributions
(basic tools in that approach) requires the evaluation of traces of powers of the N-electron
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Hamiltonian (Cowan 1981, Bauche and Bauche-Arnoult 1990, Karwowski and Bancewicz
1987). This calculation of moments is useful not only to describe spectra. As they are
invariants of unitary transformations of the basis in the model space, they characterize the
space rather than a determined representation. This property has been applied to the location
of errors in Hamiltonian matrices in Ci programs (Diercksen et al 1990).

This paper approaches the problem of the determination of moments of speciral density
distributions, in the FC1 space, providing a simple procedure for the calculation of spin-
adapted traces of powers of the Hamiltonian operator. An explicit formula for the moment
of any order »n of a spectral density distribution is obtained, which is worthwhile from
a mathematical point of view as well as for computational purposes. The evaluation of
that formula is based on the method described recently (Torre et al 1993) for calculating
spin-adapted traces of spin-free p-order replacement operators (p-RO) {p € N) (Kutzelnigg
1985, Paldus and Jeziorski 1988).

The paper has been organized as follows. Section 2 describes the basic concepts which
relate the nth order moment of a spectral density distribution to the spin-adapted traces
of products of n 2-R0Os. Section 3 reports one alternative approach. It shows that only
spin-adapted traces of N-ROs are really needed for the calculation of traces of any power of
an N-electron Hamiltonian, The explicit formulae for the H? case are given in this section
which is enlarged in the appendix with the formulae for the H? H* and H® operators.
Finally, section 4 presents a study of the spin-adapted traces of N-ROs which appear in this
problem. Some examples to explain the calculation of this type of traces are included in
this section.

2. Moments of spectral density distributions
The spin-free non-relativistic N-electron Hamiltonian, in second quantization, is written as

- 1 ; :
H=z 3 'Hjf’Ef (0
Lkt

where 2Hif are the generalized two-electron integrals (Valdemoro 1992)
1
N -1

(ijlkl} are the standard two-electron integrals following the Mulliken convention and €;
are the one-electron integrals. ZE}‘} are the second-order, spin-free replacement operators
(2-r0O) whose p-order version is (Kutzelnigg 1985, Paldus and Jeziorski 1988)

THY = (kD) + (8u €1 + 8 ) o))

£t + +
PE) S = Z .. Zbr‘m By oy by (3)
141 Op
and where b" . /b;,4, are the usual creation/annihilation fermion operators; o1, ..., ), are the
spin coordinates and iy, ..., {p f1,..., jp .- are the K orbital functions of an orthonormal

basis set.

Usually the Hamiltonian # is projected onto a model space which is an antisymmetric
and spin-adapted subspace H4(N, K, S, S;) of a finite-dimensional Hilbert space. The.
subspace HA(N, K, S, §;) is defined as the antisymmetric and spin-adapted part of the
N-fold tensorial product of a one-electron space

HAMN,K,5,8)= (V{? ”)é.s, )
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where A stands for antisymmetric and S and §; refer to the standard spin quantum numbers.
The one-electron space Vay is spanned by a set of 2K spin-orbitals and is a product of the
K -dimensional orbital space

Vi = (&1 &)

spanned by a set of K orthoncrmal orbitals and the two-dimensional spin space. The
HA(N,K,S,S,) subspace is also known as the full configuration interaction (FCI) space
(Paldus §976).

The dimension of the HA(N, K. S, S;) subspace, D(N, §, K), is given by the well
known Weyl-Paldus formula (Paldus 1974}

254+1/ K+1 K+1
D(N.S,K)—K_’_l.(%r__s)(%v__{_s_l_l) 6)

where, obviously, the H# subspace refers to a fixed value of the S, quantum number,
although its dimension is identical for all the §; values corresponding to a determined S.

An analysis of equation (6) shows a very fast growth of the dimension of the FCI space
with . Since ab initio calculations need to use K > 2N one-electron funtions in order
to get an appropriate accuracy, the diagonalization of the FCI matrix becomes intractable
except for systems with very few electrons. Hence, the altenative procedure to describe the
FCI spectrum is the statistical treatment, which requires the calculation of moments of the
spectral density distribution. Fortunately, in most situations only the lowest-order moments
are needed (Bauche and Bauche-Arncult 1990).

Choosing the origin of the energy scale so that £ = 0 (the first moment), the ath order
moment of the spectral density distribution, M,,(f:’), is defined as

. 1 N
M.(H) = D Te(H") ™)
where
Tr(A") = D (AIA"|A) ®
A

and A, ... are the basis functions of the FCI space, that is, the N-electron functions,

engenfunctlons of the (52, §,) operators, corresponding to the spin quantum numbers §

and S,, which can be constructed with the K orbital functions of the basis set employed.
Consequently, according to equation (1) the expression for the zth order moment is

- 1 ; ;

M = o DS s SrEy CEE N ©
) iy kL A

where we have adopted the shorthand notation Z[” = E(il.....:’,)'

Equation (9) allows the calculation of the nth order moment, M,(H), through the
generalized two-electron mtegrals and the spin-adapted trace of the product of n spin-free
2-ROs, 3, (Ale'” . 2JE"" , which is also referred in the literature as propagation
coefficient (Brody et al 1981 Rajadell et al 1993)

3. The traces of the Hamiltonian powers

A direct evaluation of the spin-adapted trace of the product of # 2-R0s, in equation (9}, is
a cumbersome task. In fact, the first step in this calculation is to carry out the product of
two 2-R0Os (Planelles er al 1990, Valdemoro et al 1992). Then each term of this result must
be multiplied by the third operator E“ *, giving higher order ROs, etc., so that a lot of RO3
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of different orders are obtained. Finally, the traces of alf the resulting operators must be
evaluaied.

Some treatments of those products of n 2-R0O, in the calculation of traces of powers of
the Hamiltonian, has been reported (Rajadell er al 1993). However, a simpler and more
systematic formulation of the problem can be got when the equation (1) is expressed in the
N-electron space. The N-electron Hamiltonian operator can also be written as (Torre et al
1991)

- 1
— N privein N il JN
H= N1 HJ'I Jn E Y (10)
Ui e d)
where
N ypit.dy § : 2 pyivhr 'l dge-n) phgeptyedeaty plastydn
HJ: N HJM Jlenfie=1) af(kn)---ju-n 5}'(:+|:---.f~ (an

and 5;,:;: are the product of the Kronecker deltas

af: i, _ 5“.“ el S

Jes indp

(12)

Hence, the elements of the N-clectron Hamiltonian matrix ¥ H;l"'_'j: are easily calculated

through the sum of a few generalized two-electron integrals 2H "*" It means, in
computational terms, that the N-electron matrlx does not need to be stored
Using that formulation, the trace of the Jig operator, which is related to the variance, is

T = s ST S Y Ma DB VR A (3)

ANV HIE S B 1}
where the evaluation of the trace ¥, (A]Y E‘l ‘” N E 2 |A) would require one to carry
out the product of the operators ¥ E;: ;:, N E, [ , whlch produces a sum of a large number

of rRos of orders between N and 2N (Va]demoro et al 1992).

However, those operators are applied to the N-electron functions {A}. Consequently,
the orders higher than N can be ignored and so only the N-RQO must be taken into account.
Straightforward application of the rules of the product of spin-free ROs (Valdemoro et al
1992) now leads to the trace

DAL B I8y = 30 D AN By 18) 855, (14
A PeSn A
where P(ky ... ky) means a permutation of the set ¢k; ... ky), belonging to the symmetric
group Sy and P(l;...Iy) is the same permutation referred to the indices {I}.

Due to the Kronecker deltas, the sets (j;... jy) and (%, ...ky) must be constituted by
the same functions and so when the set (ji...jy) has no repetition of indices, the nght
hand side of the equation (14) is reduced to the unique term 3, {A[VE] £ "" (A} 8¢
where the indices ¢ and & mean the position in the set (k) ...ky) which fulﬁII S = k and
jnv = kp and similarly for the intermediate cases f,... jv-1).

Since the indices of the N-RO refer to fermion operators, each index in the set (j, ... jy)
or (k; ...ky) can be repeated only once. Conseguently, a repeated index produces two terms
similar to that described above. In conclusion, the original N! traces of N-ROs, included in
equation (14), are reduced to a few terms (one term when there is no repetition of indices).
Furthermore, the sets (fy...ix) and {I;...I) must be constituted by the same functions,
otherwise the trace is zero (Lain er al 1988).
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According to those equations, the spin-adapted trace of the H? operator can be expressed
by

T = (m;z S ME NHE Y N S AN ER 1A 855,

[y 61 k0 PesSy A
(15)

where a large number of terms are zero due to the Kronecker deltas which appear in this
equation explicitly and implicitly (see equation (11)}. It provides an easy handling in a
computational point of view.

The procedure can ecasily be generalized to the calculation of traces of higher powers
of the Hamiltonian. In the appendix we report the general case H" as well as the cases
H? and H*, due to their importance in Statistics (skewness and kurtosis coefficient). In all
cases, the determination of spin-adapted traces of N-ROs is needed. This determination is
carried out in section 4.

4. The calculation of traces of N-RO

A whole study of spin-adapted traces of p-rOs over finite N-electron spaces has been
reported by Torre ef al (1993) for the general case p £ N. However, the particular case
p = N allows a more direct treatment which is usefut for the calculation of traces of the
Hamiltonian powers.

Our method for the calculation of spin-adapted traces 3, (A|? E11 l" |A) ~.k.5 is based
on the procedure {Torre et af 1993)

Z(A[‘DE” IFIA)N K.5
A

= Y (SOOPE;"TISM)) — Y (SM+DIPEL"|SM+1)  (16)
S S(M+1)
where S(M) denotes the N-electron Slater determinants that can be constructed with a
basis set of X orbital functions, having the largest eigenvalue, S, = M, of the S, operator
for a determined spin quantum number S, that is, having (N, = — + 5} a-electrons and
(Ng = % — §) B-electrons. The subscripts N, K and § have been added in order to point
out clearly the parameters which are used in the calculation of the trace. Equation (16)
implies that the calculation of the spin-adapted trace of a p-RO can be carried out through
a difference of traces taken over the Slater determinants corresponding to the eigenvalues
Mand M+ 1.
Our treatment for the calculation of traces of PE J,' J” operators, in the general case
< N, requires, at first, to classify the creation/annhilation sets (&1...ip) and (i ... jphs
accordmg to they have or do not have repetition of indices and according to the p-RO is
diagonal, (i; = ji...ip, = jp), or off diagonal. In a second step, a progresive reduction of
the p-RO 10 lower orders is carried out so that final formulae which are simple relationships
between binomiat coefficients are obtained (Torre et al 1993). In the particular case p = N,
it is possible 1o carry out a direct calculation of those traces, avoiding both steps.

As has been mentioned above, the sets (i;...iy) and (i ... jx), in the N-RO, must be
composed by identical orbital functions {otherwise the trace of the ¥ E" ;ﬁ operator would
be zero). Let us now consider that a given Slater determinant [S(M )) is constituted by
a block of N, o-spin orbitals and another one of Nz S-spin orbitals. Consequently, the
calculation of the spin-adapted trace of a N-RO, through equation (16), requires to select
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from the annihilation set (i ... ja), that is, from the sum 3°, ---3 . bjyay ** bjye)» the
terms containing the o- and B-spin functions which are coincident with the spin-orbitals
which compose any of the Slater determinants of the sum 3 5. The same argument
must be applied simultaneously t¢ the creation set (i;...iy). Hence, the application to a
particular Slater determinant of the fermion operators derived from the sets (i) ...iy) and
(i ... jn) Jeads to zero unless each of these sets can be divided into two blocks of N, and
Nj spin functions, respectively, so that the «-blocks are composed by identical functions
and similarly for the 8-blocks. .

An easier explanation of these arguments can be obtained when the operator ¥ Ej:jﬁ
is represented by the graph

i iz iy in
» » » »
. . . .
¥} Jk J JN

where, according to equation (3}, the functions occupying the same position have identical
spin-coordinate. The vertical lines define two subsets, (ix...i;) and (G ... ji), constituted
by identical orbital funtions, having all of them the same spin (@ or £). Consequently, the
subsets (§y ...0—1, {41 .. ix) and (fy ... je—1, ji41 - - - S ) must also have the same spin but
it must be the opposite one (8 or «) to that of the previous subsets.

The contribution of a particular choice of the subsets (iy...i) and (ji...Jj) to the
sum ):S(M)(S(M)INE}::::;’;IS(M)) is (—1)y%+¥, where v, and vg are the number of
transpositions required to pass from the ordered subset (i ...f)) to the (j; ... j;) one and
from (Iy ... fgm1s Gl - oL ENT 1O (1o Jimts Jiva .. - S ), respectively, Obviously, the correct
calculation of the trace of the ¥ E;:'Jz operator requires that one take into account all
the possibilities for constructing the subsets (i ...#) and (ji ... j;) derived from the sets
(.- in) and (ji .- jw).

In order to clarify these aspects, let us consider the simple numerical example
Y AAMC B A veg.s=1. The graph of that 6-RO is

I 2 3 4 5 6

L 3 - L} . . L]

2 1 4 3 6 5

where the numbers 1, 2, 3... mean different orbital functions and the subscript X has been
dropped due to the value of the trace of a N-RO is independent of that parameter.

According to the values § = 1, N = 6, N, = 4 and Ng = 2, the Slater determinants
which contribute with a non-zero value to the trace are determined by the graphs

1828 3eqoseg 1902, 3848, 36 19232 4%, 5868

2818| qe3e675e 2219] 4838] 6252 2012493% 6P5P

The values of the v, + vg transpositions in each graph make (—1)%*" = —1 so that
the sum 3 ¢ (S(M Y EIZ8IS(M)) yws.s=1 is —3. As can easily be checked, the term
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sy SM A+ DISERHRIS(M+1))v=s.5=1 (Na =5, Ng = 1) is zero and, consequently,
according to equatton (16), the total trace Y, (ASEIZ421 A} yos, s=1 has the value —3.
The application of this procedure is particularly simple when diagonal N-rOs are

considered. In the case of a diagonal N-ro, such as VE|"/", the graph is

i i In
[ .
o
1 i N

Consequenily, the value of expression ES(M) S E:I‘ :ﬁ |SE(MDY is the number of
possibilities for constructing the blocks of ¥, and Nz functions, which is the same than the

number of the N-electron Slater determinants, having N, a-electrons and N §-electrons,
that can be constructed with those N orbital functions that is, ( ) = ( Ny }. In a similar way,

the value of the expression 3 g1, {S(M + DIV E[*1S(M + 1)) is (Mfi,) = (4):

[Ipm e
Hence, a direct application of equation (16) to the case of diagonal N-ROs leads to

N wiy ity _ N N
Z(AI E,,‘fNIA}N.s—(%_l_S BRETREY

A
N N
- _ 17
(#%5)-(5-1) a

which is a simple and useful equation for the calculation of spin-adapted traces of diagonal
N-ROs.

The general procedure can be also applied to the N-ROs which have repetition of indices
in the sets (£, ...iy) and (7} ... jy) but in these situations the Pauli principle must be taken
into account for constructing the blocks of Ny and N functions. According to that principle,
a determined index can be only repeated twice and so those kind of indices must be separated
in the & and 8 blocks; they cannot be repeated in the same block. Graphs having blocks
(e or B) with repetition of indices must be neglected. An appropriate example to illustrate
this case is 3., (AP E3i33|8) ys s=1- The graph of the 5-RO is

i 2 1 3 2

2 1 2 1 3

and N, =3 Ng =2
The Slater determinants which contsibute o the trace value correspond to the graphs

1828, 123208 19) 2818 3upe

2618) Qo a3 24} 1828] 123

which lead to 3, (AP E}BHEIA) yos 5=y = —2
Note, finally, that the value of the traces of N-ROs is independent on the type and the
number, K, of orbital functions of the employed basis set.
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Appendix. Traces of the A3 and H? operators: generalization

Explicit formulae for Te(HY), Tr(I:?"‘) and Tr(ﬁ") are given in this appendix. They are a
straightforward generalization of equation (15).
The trace of the H* operator is

W) = g DL M g

{4 kb Ip g}
N pireiy St Prldidy)
Z Z Z{Ai EP:(QI---QN) |4} 31"1(1‘1-“%’) aPz(lePN) (A)
Py eSy Poe8y
with the condition that the set P(q...gn) must be a permutation of the ordered set

Gy ein) )
The trace of the H* operator is

WA = e ST S S ST Ma VR VH e s

) Ut kb (g fet i) Ls)

N v Prthodud pPalgiagn)
X Yo > D DOAAMERY AN L SR s (A2)
PIeSy PacSy PaeSy

again with the condition that Py(s; ...sy) is a permutation of (f;...ix}.
The trace of any other power of the Hamiltonian can be obtained following this device
without any difﬁculty:

T(H") = (Nr)n ZZ EZ NH[ JNNH;;?,::: Z

{1 4 {7} 1" Pesy
N iy Hedh PR P(n-z)Ulcn—“--J}J'—”)
E Z{Ai EP(#—HU; -IR) lA)aPl(H i) 61"1(13 ) .Hap(n-l}(“':'---"nﬂ}
P_nedny A

(A3)
with Pl (il ... Jj) = G
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