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Calculation of moments of spectral density distributions in 
finite-dimensional N-electron spin-adapted spaces 
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Ahtract. This paper reports a calcul~on of moments of spectral density distributions which 
are used in stillislid theory ofspeara of my-electron systems. The procedure lead to formulae 
which are fit for computer evaluations. The method is based on the determination of spin-adapted 
traces of powers of lhe Hamiltonian opentor, represented in a finite-dimensional antisymmetric 
and spin-adapted Hilbert space. A whole study of the m e s  which appear in this problem is 
described. 

1. Introduction 

In dealing with the study of discrete spectra of N-particle systems, the statistical method 
has proved to be a powerful tool. The determination of individual energy values is difficult 
in many experimental studies or it requires great effort in precise quantum mechanical 
calculations. Alternatively, general characteristics of the discrete spectra can be derived 
in the treatment which is known as statistical spectroscopy (Brody et al 1981, French and 
Kota 1982). The statistical techniques were first used in the analysis of nuclear spectra 
(Porter 1965, Nomura 1972, Nomura 1974). However they have been also applied to the 
description of spectra of N-electron systems, being particularly useful in situations where 
the number of levels is very large (Cowan 1981). Classical examples of application of the 
statistical approach are the studies of the emission spectra of highly ionized atoms, which 
appear in plasmas and astrophysics, where usually the lines corresponding to the transitions 
between the levels of two configurations are not well resolved (Bauche-Amoult et a1 1984, 
Bancewiz and Karwowski 1991, Bauche and Bauche-Arnoult 1990). 

The statistical study of spectra is based on the treatment of the set of the eigenvalues 
of the Hamiltonian as a statistical ensemble. Hence, all the properties of the system can 
be derived from an appropriate knowledge of the distribution function. Two strategies 
may be applied to approximate the distribution function. Either its shape is assumed to 
depend on several parameters, which necessitates checking that asumption or. altematively, 
the distribution function is expressed through a Gramxharlier expansion (Bauche and 
Bauche-Amoult 1990). In the latter case, calculation of the moments of the spectral density 
distribution to a determined order n is needed. 

In the description of N-electron systems, the Hamiltonian is usually represented in a 
finite-dimensional, antisymmetric and spin-adapted Hilbert space which is also known as 
full configuration interaction (=I) space (Paldus 1976). Hence, in statistical treatments of 
the N-electron systems, the calculation of the moments of spectral density distributions 
(basic tools in that approach) requires the evaluation of traces of powers of the N-electron 
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Hamiltonian (Cowan 1981, Bauche and Bauche-Arnoult 1990, Karwowski and Bancewicz 
1987). This calculation of moments is useful not only to describe spectra. As they are 
invariants of unitary transformations of the basis in the model space, they characterize the 
space rather than a determined representation. This property has been applied to the location 
of errors in Hamiltonian matrices in CI programs (Diercksen et nl 1990). 

This paper approaches the problem of the determination of moments of spectral density 
distributions, in the FCI space, providing a simple procedure for the calculation of spin- 
adapted traces of powers of the Hamiltonian operator. An explicit formula for the moment 
of any order n of a spectral density distribution is obtained, which is worthwhile from 
a mathematical point of view as wen as for computational purposes. The evaluation of 
that formula is based on the method described recently Vorre et 01 1993) for calculating 
spin-adapted traces of spin-free p-order replacement operators (p-Ro) ( p  < N )  (Kutzelnigg 
1985, Paldus and Jeziorski 1988). 

The paper has been organized as follows, Section 2 describes the basic concepts which 
relate the nth order moment of a spectral density distribution to the spin-adapted traces 
of products of n 2-ROs. Section 3 reports one alternative approach. It shows that only 
spin-adapted traces of N-ROs are really needed for the calculation of traces of any power of 
an N-electron Hamiltonian, The expticit formulae for the W case are given in this section 
which is enlarged in the appendix with the formulae for the Ij3, i4 and operators. 
Finally, section 4 presents a study of the spin-adapted traces of N-ROS which appear in this 
problem. Some examples to explain the calculation of this type of traces are included in 
this section. 

A Torre and L Lain 
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2. Moments of spcctral density distributions 

The spin-free non-relativistic N-electron Hamiltonian, in second quantization, is wrinen as 

where 'HF are the generalized two-electron integrals (Valdemoro i992) 

1 
N - 1  (2) ZH;; = ( i j l k l )  t - ( 6 ~  E i j  + 6 i j  E H )  

(ijlkl) are the standard two-electron integrals following the Mulliken comention and 
are the one-electron integrals. 'E;! are the second-order, spin-free replacement operators 
(2-RO) whose p-order version is (Kutzelnigg 1985, Paldus and Jeziorski 1988) 

and where b&,/bj,ob are the usual creatiodannihilation fermion operators; (I,, . . . , up are the 
spin coordinates and i l ,  . . . , i,, j , ,  . . . , j ,  . . . are the K orbital functions of an orthonormal 
basis set. 

Usually the Hamiltonian fi is projected onto a model space which is an antisymmetric 
and spin-adapted subspace HA(N, K, S. S,) of a finite-dimensional Hilbert space. The. 
subspace HA@" K, S, S,) is defined as the antisymmetric and spin-adapted part of the 
N-fold tensorial product of a one-electron space 
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where A stands for antisymmetric and S and S, refer to the standard spin quantum numbers. 
The one-electron space V ~ K  is spanned by a set of 2K spin-orbitals and is a product of the 
K-dimensional orbital space 

(5 )  V K  = I @ k l k = i  

spanned by a set of K orthonormal orbitals and the two-dimensional spin space. The 
H A ( N ,  K, S, S,) subspace is also known as the full configuration interaction (FCI) space 
(Paldus 1976). 

The dimension of the H A W ,  K. S, S,) subspace, D ( N ,  S, K), is given by the well 
known Weyl-Paldus formula (Faldus 1974) 

K 

K + l  D ( N ,  S, K) = - 
where, obviously, the H A  subspace refers to a fixed value of the S, quantum number, 
although its dimension is identical for all the S, values corresponding to a determined S. 

An analysis of equation (6) shows a very fast growth of the dimension of the XI space 
with N .  Since ab initio calculations need to use K z 2N one-electron funtions in order 
to get an appropriate accuracy, the diagonalization of the FCI matrix becomes intractable 
except for systems with very few electrons. Hence, the altenative procedure to describe the 
FCI spectrum is the statistical treatment, which requires the calculation of moments of the 
spec@al density disbibution. Fortunately, in most situations only the lowest-order moments 
are needed (Bauche and Bauche-Arnoult 1990). 

Choosing the origin of the energy scale so that E = 0 (the first moment), the nth order 
moment of the spectral density distribution, ME@), is defined as 

1 
D M&) = - Tr(f?") (7) 

where 

and A , .  . . are the basis functions of the FCI space, that is, the N-electron functions, 
eigenfunctions of the ($, iZ) operators, corresponding to the spin quantum numbers S 
and S,, which can be constructed with the K orbital functions of the basis set employed. 

ConsequentIy, according to equation (1) the expression for the nth order moment is ' 

where we have adopted the shorthand notation Eli, = Ea ,,,,,, i n ) ,  

Equation (9) allows the calculation of the nth order moment, A&(&, through the 
generalized two-electron inte ais and the spin-adapted trace of the product of n spin-free 
2-ROS. EA(AlzEj;$ . . .*Ek,; IA), which is also referred in the literature as propagation 
coefficient (Brody er a1 1981, Rajadell eta1 1993) 

P 

3. The traces of the Hamiltonian powers 

A direct evaluation of the spin-adapted trace of the product of n 2-ROs, in equation (9), is 
a cumbersome task. In fact, the first step in this calculation is to cany out the product of 
two 2-ROS (Planelles et a1 1990, Valdemoro e# a! 1992). Then each term of this result must 
be multiplied by the third operator *E;:, giving higher order ROS, etc., so that a lot of ROS 
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of different orders are obtained. Finally, the traces of all the resulting operators must be 
evaluated. 

Some treatments of those products of n 2 - ~ 0 ,  in the calculation of traces of powers of 
the Hamiltonian, has been reported (Rajadell et nl 1993). However, a simpler and more 
systematic formulation of the problem can be got when the equation (1) is expressed in the 
N-electron space, The N-electron Hamiltonian operator can also be written as (Torre et a! 
1991) 

A Torre and L Lain 

and 8r'""r are the product of the Kronecker deltas 
Jb-Jp 

Hence, the elements of the N-electron Hamiltonian matrix NH,!:;,;j; are easily calculated 
through the sum of a few generalized two-electron integrals 2 H i i .  It means, in 
computational terms, that the N-electron matrix does not need to be stored. 

Using that formulation, the trace of the H2 operator, which is related to the variance, is 

where the evaluation of the trace E A { A I N E ~ ~ ; : ; ~  IA) would require one to cany 
out the product of the operators 'E::::::: which produces a sum of a large number 
of ROS of orders between N and 2N (Valdemoro et a1 1992). 

However, those operators are applied to the N-electron functions IA). Consequently, 
the orders higher than N can be ignored and so only the N-RO must be taken into account. 
Straightforward application of the rules of the product of spin-free ROS (Valdemoro et a1 
1992) now leads to the trace 

C ( A I N E j : : : : i  "E::::? In) = x(AINE:&N)  In) g p ( k ,  ... k N )  (14) 

where P(k1 . . . k N )  means a permutation of the set (kj . . . k N ) ,  belonging to the symmetric 
group SN and P(1, ... I N )  is the same permutation referred to the indices ( I ) .  

Due to the Kronecker deltas, the sets ( j l  . . . j N )  and (kl . . . k ~ )  must be constituted by 
the same functions and so when the set ( j l  . . . j N )  has no repetition of indices, the right 
hand side of the equation (14) is reduced to the unique term E A ( A I N E ~ ~ : : : ~  (A)  6ka,,,b, j b h  

where the indices a and b mean the position in the set (kl . . . k N )  which fulfill j l  = k. and 
j N  = kb and similarly for the intermediate cases j 2  . . . j ( N - 1 ) .  

Since the indices of the N-RO refer to fermion operators, each index in the set ( j l  . . . j N )  
or (kl . . . k N )  can be repeated only once. Consequently, a repeated index produces two terms 
similar to that described above. In conclusion, the original N! traces of N-ROS, included in 
equation (14), are reduced to a few terms (one term when there is no repetition of indices). 
Furthermore, the sets (il . . . i N )  and (1, . . . lb) must be constituted by the same functions, 
otherwise the trace is zero (Lain et d 1988). 

A Pes# A 
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operator can be expressed According to those equations, the spin-adapted trace of the 
by 

(15) 
where a large number of terms are zero due to the Kronecker deltas which appear in this 
equation explicitly and implicitly (see equation (11)). It provides an easy handling in a 
computational point of view. 

The procedure can easily be generalized to the calculation of traces of higher powers 
of the Hamiltonian. In the appendix we report the general case &’ as well as the cases 
g3 and &, due to their importance in Statistics (skewness and kurtosis coefficient). In all 
cases, the determination of spin-adapted traces of N-ROS is needed. This determination is 
carried out in section 4. 

4. The calculation of traces of N-RO 

A whole study of spin-adapted traces of p-ROs over finite N-elecron spaces has been 
reported by Torre et a1 (1993) for the general case p < N. However, the particular case 
p = N allows a more direct treatment which is useful for the calculation of traces of the 
Hamiltonian powers. 

Our method for the calculation of spin-adapted traces CA(hJPE;::::x \A)N.K.s is based 
on the procedure (Torre et a1 1993) 
C(A~PE!’-’O ,,...j,, IA)N.K,s 

. .  

. .  

A 

where S ( M )  denotes the N-electron Slater determinants that can be consbuct@ with a 
basis set of K orbital functions, having the largest eigenvalue, S, = M, of the S, operator 
for a determined spin quantum number S, that is, having (N, = $ + S )  a-electrons and 
(Np = $ - S) p-electrons. The subscripts N ,  K and S have been added in order to point 
out clearly the parameters which are used in the calculation of the trace. Equation (16) 
implies that the calculation of the spin-adapted trace of a p-RO can be carried out through 
a difference of traces taken over the Slater determinants corresponding to the eigenvalues 
M and M + I .  

Our treatment for the calculation of traces of PE:,’:::; operators, in the general case 
p < N, requires, at first, to classify the creation/annihilation sets (il . . .ip) and ( j t  . . . j , ) ,  
according to they have or do not have repetition of indices and according to the p-Ro is 
diagonal, (i, = j l  . . , i, = j,,), or off diagonal. In a second step, a progresive reduction of 
the p - ~ o  to lower orders is carried out so that final formulae which are simple relationships 
between binomial coefficients are obtained (Torre etal 1993). In the particular case p = N, 
it is possible to carry out a direct calculation of those traces, avoiding both steps. 

As has been mentioned above, the sets (it , , . i ~ )  and ( j ,  . . . j ~ ) ,  in the N-Ro, must be 
composed by identical orbital functions (otherwise the trace of the ‘E;:;;;: operator would 
be zero). Let us now consider that a given Slater determinant IS(M)) IS constituted by 
a block of N, a-spin orbitals and another one of Ng @-spin orbitals. Consequently, the 
calculation of the spin-adapted trace of a N-RO, through equation (16), requires to select 

. .  



il . 
. . .  . 

31 

i k  i N  . . . 
... . . .  . . 

0. 

j k  j f  I N  
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&M+I)(S(M+ 1)16E:$i2glS(M+ I))N=~.s=I (N. = 5. Ng = I )  is zero and, consequently, 
according to equation (16), the total trace ~ A ( A 1 6 E : ~ ~ ~ ~ ~ 1 A ) N = ~ . ~ , l  has the value -3. 

The application of this procedure is particularly simple when diagonal N-ROS are 
considered. In the case of a diagonal N-RO. such as the graph is 

i ,  i2  iN . .  . 

Zplp  

. .  . 
i l  iz  i N  

Consequently, the value of expression & ( u , ( S ( M ) I N E ~ : : : j ~  IS(M)) is the number of 
possibilities for constructing the blocks of N, and Np functions, which is the same than the 
number of the N-electron Slater determinants, having No: a-electrons and Ng ,%electrons, 
that can be constructed with those N orbital functions that is, ([) = ( ) In a similar way, 

the value of the expression &(M+, ) (S (M+ l)['Et!?::1S(M + I ) )  is (":,) = (,&). 
N8 ' 

Hence, a direct application of equation (16) to the case of diagonal N-ROS leads to 

2nlu3u 2' 1g2# l"3" 

which is a simple and useful equation for the calculation of spin-adapted traces of diagonal 
N-ROS. 

The general procedure can be also applied to the N-ROS which have repetition of indices 
in the sets (il . , . ia) and (jl . . . j , )  but in these situations the Pauli principle must be taken 
into account for constructing the blocks of Nu and Ng functions. According to that principle, 
a determined index can be only repeated twice and so those kind of indices must be separated 
in the 01 and fl  blocks; they cannot be repeated in the same block. Graphs having blocks 
(a or 0) with repetition of indices must be neglected. An appropriate example to illushate 
this case is C,(Ar'E::::,"IA),,,,,=i. The graph of the 5-RO is 

1 2 1 3 2  
e . . . .  
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Appendix. Traces of the H3 and H 4  operators: generalization 

Explicit formulae for Tr(fi’), Tr(A4) and Tr(fi”) are given in this appendix. They are a 
straightforward generalization of equation (15). 

The trace of the r i 3  operator is 

with the condition that the set PZ(q1.. . q N )  must be a petmutation of the ordered set 
(il . . . iN) 

The trace of the fi4 operator is 

again with the condition that &(SI . . . S N )  is a permutation of (il . . . i n ) ,  

without any difficulty: 
The trace of any other power of the Hamiltonian can be obtained following this device 

with Pln- l ) ( jF. .  . j ; )  = (i ,  I . .. z N )  .I 
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